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Abstract— Effective and robust regulation of biomolecular
processes is crucial for designing reliable synthetic bio-devices
functioning in uncertain and constantly changing biological en-
vironments. Proportional-Integral-Derivative (PID) controllers
are undeniably the most common way of implementing feed-
back control in modern technological applications. Here, we
introduce a highly tunable PID bio-controller with set point
weighting and filtered derivative action presented as a chemical
reaction network with mass action kinetics. To demonstrate its
effectiveness, we apply our PID scheme on a simple biological
process of two mutually activated species, one of which is as-
sumed to be the output of interest. To highlight its performance
advantages we compare it to PI regulation using numerical
simulations in both the deterministic and stochastic setting.

I. INTRODUCTION

The fast growing field of Synthetic Biology aims to
engineer biomolecular systems with novel and useful func-
tionalities in order to tackle a long list of pressing, real-
world problems [1], [2], [3], [4]. Arguably, one of the main
challenges of building synthetic bio-devices operating in the
uncertain cellular environment is achieving a reliable and
predictable behaviour. Feedback control theory provides a
large variety of tools that have proven to be of fundamen-
tal importance in regulating such devices, optimizing their
function and rendering them robust to disturbances [5], [6],
[7], [8], [9].

Proportional - Integral - Derivative (PID) feedback con-
trollers are regarded as the workhorses of control engineering
[10], [11]. They are often called “three - term” controllers
due to their triple control action accounting for the past,
present and future. More specifically, integral control (I-
term) accounts for the history of the error between the set
point (desired target value) and the output of interest by
accumulating it over time. An important characteristic of
the I-term is its ability to eliminate the steady-state error,
provided that the feedback system is stable. The present
is represented by the P-term which produces a control
signal proportional to the current value of the error. Lastly,
derivative control (D-term) provides anticipatory action by
estimating future values of the error via linear extrapolation.
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Because of the pervasiveness of PID control in tech-
nological applications, the biomolecular implementation of
PID controllers has been of great interest in Synthetic
Biology and there have been several successful research
efforts towards this direction. Notably, the authors in [12]
present a hierarchical library of nonlinear PID controllers
consisting of up to four biomolecular species with a first-
order low-pass filter accompanying some or all the three
control terms (P-, I- and D-term). Another example is the
PID architecture proposed in [13] where different variations
of Michaelis-Menten functions are exploited. Furthermore,
the PID designs studied in [14], [15] use the so-called dual
rail encoding [16], by which a signal is decomposed into
two non-negative components and, thus, both positive and
negative signals can be represented via biomolecular species.
In addition, the authors [17] analyze the noise suppression
properties of individual proportional, integral and derivative
controllers tailored to gene expression.

In this paper, we introduce an alternative biomolecular net-
work functioning as a PID controller around the nominal op-
eration of the resulting closed-loop system (equilibria). The
biomolecular interactions involved are defined by general
chemical reaction networks (CRNs) based purely on mass
action kinetics [18] and without using dual rail encoding.
At the same time, our bio-controller acts solely on the target
species (output of interest) without considering other species
or reactions of the network to be controlled (open-loop sys-
tem) as happens, for instance, in [12]. To achieve enhanced
dynamic performance we adopt a special form of set point
weighting commonly used in technological applications and
we accompany derivative control with the strong filtering
action of a second-order low-pass filter. Moreover, our PID
configuration includes six controller species that allow us
to build each of the P-, I-, D- terms almost independently
providing significant tuning flexibility regarding controller
gains, set point weights and filtering. Finally, the proposed
PID configuration can be used for controlling any open-loop
biological process assuming the existence of a biologically
meaningful equilibrium and asymptotic stability for the re-
sulting closed-loop system. Here we focus exclusively on
scenarios where this condition is satisfied.

The paper is structured as follows: Section II presents
some background concepts on PID control, biomolecular in-
teractions, modelling tools and essential biomolecular motifs.
Section III analyzes the main characteristics of the proposed
PID bio-controller. Subsequently, an application example
including a comparison between PI and PID control in the
deterministic and stochastic setting is provided in Sections
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Fig. 1: Ideal PID control of a process based on error feedback
[10], [11].

IVand V, respectively. Section VI concludes our work and
discusses future research directions.

II. BACKGROUND

In this section we first outline key properties of PID con-
trol and challenges in its implementation, review principles
of biomolecular modelling and then present two important
biomolecular motifs that implement integral and derivative
action.

A. Key points on PID control

Here we briefly present some important features of PID
control action [10], [11] based on which our PID bio-
controller has been developed.

First, recall that the “traditional”, ideal PID algorithm
(Figure 1) is described as follows:

u(t) = kpe(t) + ki

∫
t

0

e(τ)dτ + kd
e(t)
dt

(1)

where u(t), e(t) represent the control input signal and the
control error, respectively. The latter is defined as e(t) =
ysp − y(t), where ysp is the set point and y is the process
output.

A major problem of the (ideal) derivative action in Equa-
tion (1) is its sensitivity to high-frequency signal com-
ponents. This can lead to excessively high gains and, by
extension, large variations in terms of the control signal. A
common strategy to overcome this obstacle is to accompany
the derivative term with a low-pass filter.

Another challenge is derivative kick: When the set point is
constant, the derivative of the error in Equation (1) becomes
e(t)
dt

=−y(t)
dt

since
ysp

dt
= 0. Abrupt changes of the set point

(when the set point is adjusted) make the aforementioned
derivative very large causing undesirable transients in the
control signal (derivative kick). To avoid this, we can replace
e(t) with −y(t) in the derivative term of Equation (1).

The behaviour of the controller can be further improved
by modifying appropriately the error quantity on which
the proportional action acts. To this end, we consider an

Fig. 2: (A) Table with the different types of biomolecular
interactions adopted from our previous work [19]. (B) An-
tithetic integral controller regulating a target species which
is part of an arbitrary biological process - “cloud” network
(CRN (3)). (C) BioSD-III differentiator module (CRN (5)).

alternative PID control law with set point weighting:

u(t) = kp(λysp − y) + ki

∫
t

0

e(τ)dτ − kd
y(t)
dt

(2)

A PID controller based on Equation (2) with λ = 1 and
λ = 0 is often referred to as a PI-D and I-PD controller,
respectively. Finally, the error quantity in the integral term
needs to remain unchanged in order for the error to go to
zero at steady-state.

B. Biomolecular interactions and modelling
In Figure 2A we present all different types of biomolecular

interactions as well as their graphical notation used in this
paper. These interactions can be divided into two main
categories: non-catalytic reactions where the reactants are
consumed in order for products to be formed and catalytic
ones where species facilitate production/inhibition processes
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without being consumed.

For deterministic analysis of the biomolecular networks
discussed in this paper (Sections II-C, III, IV) Ordinary
Differential Equations (ODEs) following the law of mass
action are used [18]. For the stochastic part (Section V) the
Linear Noise Approximation (LNA) of the Chemical Master
Equation (CME) [20], [21] is exploited.

C. Two important biomolecular motifs

We now review the behaviour of two basic biomolecular
motifs that were introduced in the literature, which are con-
stituent elements of our PID architecture under appropriate
modifications.

Figure 2B shows the antithetic motif introduced in [22],
which is realized by controller species CI1, CI2, regulating
a target (output) species, Y , which is part of an arbitrary
biological process - “cloud” network. This mechanism can
achieve robust perfect adaptation (RPA) through integral
feedback control. To see this, focusing on the controller
species, we have the CRN:

∅
µ

CI1 , CI1
k1 CI1 +Y ,

Y
k2 Y +CI2 , CI1 +CI2

η
∅

(3)

which can be modelled by the following set of ODEs:
ĊI1 = µ −ηCI1CI2 (4a)

ĊI2 = k2Y −ηCI1CI2 (4b)
where µ , k1, k2, η ∈ R+.

Integration is carried out by a hidden non physical “mem-
ory” variable. To see this, we subtract Equations (4a) - (4b)
and integrate to obtain:

(CI1 −CI2)(t) = k2

∫
t

0

(
µ

k2
−Y (τ)

)
dτ

Consequently, assuming closed-loop stability, at the steady
state:

Y ∗ =
µ

k2

where the ∗ notation denotes the steady state of a variable.

Figure 2C shows a topology known as BioSD-III which
we introduced in [19]. This topology is able to function as
a signal differentiator module around its nominal operation.
In particular, it receives an input signal, U , and calculates its
filtered derivative in the output, in this case species CD1. To
see this, the CRN for BioSD-III consists of the reactions:

∅
kinU

CD1 , ∅ b CD1 ,

CD1
k2 CD1 +CD2 , CD1 +CD2

k1 CD2 ,

∅
k3 CD3 , CD2 +CD3

η
∅

CD1 +CD3
k1 CD1 +CD1 +CD3

(5)

where kin, b, k2, k1, η ∈ R+. Note also that the rate of the
degradation process with respect to CD1 considered in [19]
is assumed to be zero here.

The dynamics of CRN (5) can be modelled as:
ĊD1 =kinU +b− k1CD1CD2 + k1CD1CD3 (6a)

ĊD2 =k2CD1 −ηCD2CD3 (6b)

ĊD3 =k3 −ηCD2CD3 (6c)
As shown in [19], for any non-negative constant input U∗,
we obtain a positive locally exponentially stable steady state
(X∗, Z∗

1 , Z∗
2 ).

Through (Jacobian) linearization of system (6), we have
for the local dynamics of BioSD-III:ċD1

ċD2
ċD3

=
−

k2(kinU∗+b)
k3

−k1k3

k2

k1k3

k2
k2 −ηC∗

D3 −ηC∗
D2

0 −ηC∗
D3 −ηC∗

D2


cD1

cD2
cD3

+
kin

0
0

u

where variables u =U −U∗, cD1 =CD1 −C∗
D1,

cD2 =CD2 −C∗
D2, cD3 =CD3 −C∗

D3 represent small
perturbations around (X∗, Z∗

1 , Z∗
2 ). The corresponding

input/output relation in the Laplace domain can be
described by the following transfer function:

T̃ (s) =
c̃D1(s)
ũ(s)

=
kin

k1k3

s
ε(s2 + s)+1

(7)

where:

ε =
k2

2

k1k3
3
(kinU∗+b)2 (8)

and s is the Laplace variable (complex frequency).
Equation (7) is an ideal signal differentiator multiplied by

a constant gain in series with a second-order low pass filter.
The filtering action can be adjusted to meet our performance
standards by appropriately tuning the dimensionless param-
eter (8). Thus, moving to the time domain, for a given value
of (8), there are sufficiently slow input signals yielding:

cD1 =
kin

k1k3
u̇ (9)

As also shown in [19], the structural complexity of the
differentiator module can be reduced by removing the reac-
tion CD1 +CD3

k1 CD1 +CD1 +CD3 in CRN (5) while
the input/output behaviour remains the same. This results in
ODE model (6) without the term +k1CD1CD3 in Equation
(6a). However, this simplification, which leads to a different
signal differentiator topology called BioSD-II, comes with
the cost of imposing the following constraint regarding the
parameters involved:

η ≫
k2

1k3
3

k2
2(kinU∗+b)2 (10)

III. STRUCTURE AND BEHAVIOUR OF THE PID
ARCHITECTURE

In this section we present the biological structure of the
PID controller this paper focuses on.

In Figure 3 we illustrate the biomolecular architecture of
our PID controller regulating a target (output) species, Y ,
of an abstract “cloud” network. The reactions that form the
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Fig. 3: The proposed PID bio-controller regulating a target
species which is part of an arbitrary biological process -
“cloud” network (CRN (11)).

corresponding CRN are:

∅
β1R

Y , CP0 +Y
α1 CP0 ,

Y
α2 Y +CI1 , CI1 +Y

α3 CI1 ,

∅
β2R

CI2 , CI2
α4 CI2 +Y ,

CI1 +CI2
α5 ∅ , Y

α6 Y +CD1 ,

CD1 +Y
α7 CD1 ∅

α8 CD1 ,

CD1
α9 CD1 +CD2 , ∅

α10 CD3 ,

CD1 +CD3
α11 CD1 +CD1 +CD3 ,

CD1 +CD2
α11 CD2 , CD2 +CD3

α12 ∅

(11)

where αi ∈ R+ with i ∈ N and 1≤ i≤ 12. R is a non-negative
reference signal that can vary over time and can be controlled
externally while β1, β2 are non-negative scaling parameters.
Through that signal we can adjust the set point of the
closed-loop system. In parallel, CP0 can be considered as an
auxiliary species with constant concentration that catalyzes
the degradation of the target species Y . Note also that the
modified version of the antithetic motif with an additional
inhibitory reaction as formed by species CI1, CI2 has been
studied in [23].

A. Achieving PID control

To gain a deeper understanding of the proposed topology
(Figure 1B), we study the corresponding dynamics which
can be described by the following set of ODEs:

Ẏ = F +β1R−α1CP0Y +α4CI1 −α3CI2Y −α7CD1Y︸ ︷︷ ︸
control input signal

(4a)

ĊI1 = β2R−α5CI1CI2 (4b)

ĊI2 = α2Y −α5CI1CI2 (4c)

ĊD1 = α6Y +α8 −α11CD1CD2 +α11CD1CD3 (4d)

ĊD2 = α9CD1 −α12CD2CD3 (4e)

ĊD3 = α10 −α12CD2CD3 (4f)
where function F represents the mathematical terms describ-
ing potential interactions associated with the output species
Y in the cloud network.

We assume the existence of a (locally) asymptotically
stable and biologically meaningful equilibrium for the overall
closed loop system for some constant value, R∗, of ref-
erence signal R and we focus on the local behaviour of
our bio-controller around it. We therefore adopt coordinate
transformations of the form x = X −X∗ which denote small
perturbations around the equilibrium. (X and X∗ represent
any variable involved in the system under consideration and
its corresponding steady state, respectively.) Thus, we obtain
via (Jacobian) linearization of Equations (4a)-(4f):

ẏ = f +uPID (5a)
ċI1 = β2r−α5C∗

I2cI1 −α5C∗
I1cI2 (5b)

ċI2 = α2y−α5C∗
I2cI1 −α5C∗

I1cI2 (5c)
ċD1 = α6y−α11(C∗

D2 −C∗
D3)cD1 −α11C∗

D1cD2 +α11C∗
D1cD3

(5d)
ċD2 = α9cD1 −α12C∗

D3cD2 −α12C∗
D2cD3 (5e)

ċD3 = −α12C∗
D3cD2 −α12C∗

D2cD3 (5f)
where f refers to the “linearized version” of F around the
aforementioned equilibrium and the control input signal is
given by:

uPID = β1r− (α1CP0 +α3C∗
I2 +α7C∗

D1)Y
+α4cI1 −α3Y ∗cI2 −α7Y ∗cD1

(14)

From Equations (4b)-(4c) we get at the steady state :

Y ∗ =
β2R∗

α2
(15)

Moreover, species CD1, CD2, CD3 form a BioSD-III module
with u = y (see Equations (4d)-(4f)). Thus, taking into
account Equations (7)-(10), we have for the input/output
relation in the Laplace domain:

T̃ (s) =
c̃D1(s)
ỹ(s)

=
α6

α10α11

s
ε(s2 + s)+1

(16)

where:

ε =
α2

9

α3
10α11

(α6Y ∗+α8)
2 (17)

while the parameter constraint for the simplified BioSD-II
module becomes:

α12 ≫
α3

10α2
11

α2
9 (α6Y ∗+α8)2 (18)

Setting now

δ =
β2(α1CP0 +α3C∗

I2 +α7C∗
D1)

α2

and assuming β2R∗ =
α2α4

α3
, the control input signal (14)

can be rewritten as:

uPID = kp(λysp −y) + ki

∫
t

0

(ysp −y) dτ − kdcD1 (19)

with:

ysp =
β2r
α2

, λ =
β1

δ
, kp =

α2δ

β2
, ki =

α4

α2
, kd =

α4α7

α3

Equation (19) describes a PID control law with set point
weighting and filtered derivative action. As can be seen, our
architecture offers considerable tunability since the controller
gains, the set point weight regarding proportional control as
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Fig. 4: (A) The proposed PID bio-controller regulates a target
species (Y ) of a network consisting of two mutually activated
species (CRNs (11), (20)). (B) Simulated response of the
target species (Y ) regarding the topology in (A) described
by ODE model (11). In particular: For PI case, we use only
Equations (11a)-(11d) with the following parameter values:
γ1 = 0.5, γ2 = 1, γ3 = 1, γ4 = 2, γ5 = 4, γ6 = 4, β1R = 1,
β2R= 5, α1CP0 = 0.2, α2 = 1, α3 = 0.4, α4 = 2, α5 = 10. Ad-
ditionally, the term −α7CD1Y in Equation (11a) is assumed
to be removed since there is no derivative action. In PID1
case, derivative control takes place through BioSD-III. Here
we use Equations (11a)-(11g) with the following parameter
values: α6 = 100, α7 = 0.15, α8 = 100, α9 = 1, α10 = 100,
α11 = 1, α12 = 10 while the rest of the parameter values are
the same as in PI case. In PID2 case we replace BioSD-III
with BioSD-II which results in ODE model (11) without the
term +α11CD1CD3 in Equation (11e). We also use the same
parameter values as in PID1 case except for α12 = 500 so
that condition (18) is satisfied. The simulations depicted in
this figure were performed in MATLAB (Mathworks).

well as the filtering action regarding derivative control can
be tuned separately as desired. In addition, setting β1 = 1 or
β1 = 0 leads to a PI-D or I-PD control law, respectively.

IV. REGULATING A SPECIFIC BIOLOGICAL PROCESS

In this section we investigate the properties of our PID
controller on a specific biological process.

In particular, we replace the abstract cloud network of
Figure 3 with a biological process of two mutually activated
species, Y and W , with the first species being the target
species on which we apply PID control (Figure 4A). This

Fig. 5: Time evolution of the standard deviation, σ of the
target species Y of the closed-loop system shown in Figure
4. The models and the parameter sets for PI and PID cases
correspond to the cases of PI and PID1 of Figure 4. Also,
the case of PID2 results in identical behaviour to PID1.
The simulations depicted in this figure were performed in
Kaemika [26] using LNA.

process is based on a positive feedback loop which is a very
common concept in biological systems [24], [25].

The open-loop process under consideration consists of the
following reactions:

∅
γ1

Y , ∅
γ2

W ,

Y
γ3 ∅ , W

γ4 ∅ ,

Y
γ5

Y +W , W
γ6

Y +W

(20)

Taking into account CRNs (11) and (20), the dynamics of
the resulting closed-loop system can be modelled as:

Ẏ = γ1 − γ3Y1 + γ6Y2 +β1R−α1CP0Y
+α4CI1 −α3CI2Y −α7CD1Y (11a)

Ẇ = γ2 − γ4Y2 + γ5Y1 (11b)

ĊI1 = β2R−α5CI1CI2 (11c)

ĊI2 = α2Y −α5CI1CI2 (11d)

ĊD1 = α6Y +α8 −α11CD1CD2 +α11CD1CD3 (11e)

ĊD2 = α9CD1 −α12CD2CD3 (11f)

ĊD3 = α10 −α12CD2CD3 (11g)
In Figure 4B we present the response of output species,

Y , using PI and PID control, respectively. In both scenaria
identical integral action takes place and, thus, Y converges
to the same value over time. Nevertheless, the transient
response in the first case shows a significant overshoot and
oscillations which are eliminated due to the anticipatory
action of derivative control in the second case. Moreover, as
can be seen, the output response remains the same regardless
of the signal differentiator module used in the PID bio-
controller.

V. STOCHASTIC SIMULATIONS

The random nature of biomolecular reactions makes bi-
ological systems inherently stochastic [18], [27], [28]. The
deterministic approach we have followed so far can offer
a satisfactory insight into the average biological behaviour
when biomolecular populations are sufficiently large. How-
ever, this may not be always the case and, as a consequence,
analysis of the probabilistic effects may be needed. To this
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end, we focus here on the stochastic evolution of the closed-
loop system shown in Figure 4 over time using the Linear
Noise Approximation (LNA). More specifically, in Figure
5 we plot the time evolution of the standard deviation,
denoted here as σ , with respect to the output species for
both PI and PID control. As can be seen, PID control leads
to a considerably smaller σ compared to PI control at the
steady state, demonstrating the noise reduction capability of
derivative control through BioSD modules.

VI. CONCLUSION

In this paper we propose a highly tunable CRN architec-
ture capable of applying PID feedback control locally using
set point weights and derivative control filtering. Notable
characteristics of our design are the “antithetic integration”
and “BioSD signal differentiation”. About the latter, we
consider two differentiator modules of different structural
complexity but identical input/output behaviour - reduction
of complexity entails addition of a parameter constraint.
As far as proportional control is concerned, it is realized
through a special birth-death process to which the integral
and derivative parts also contribute. To demonstrate the per-
formance benefits of our PID control strategy, we apply it to
an (open-loop) process of two mutually activated species and
compare it to PI regulation. We show through deterministic
simulations that the concentration of the output species of
interest exhibits a significantly improved transient response
with PID compared to PI control. At the same time, using
LNA we show that the addition of BioSD derivative action
can reduce the standard deviation at the steady state.

An interesting future endeavour would be to study the
stochastic behaviour of the proposed controller using other,
more accurate methods [29], and compare the results with
the LNA ones here. Finally, as our PID bio-controller is
experimentally realizable, another interesting future direction
would be an in vitro implementation via molecular program-
ming. In particular, our topology relies purely on mass action
kinetics and, thus, is possible to be translated into a DNA
strand displacement system [30], [31], [32].
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